
IT Middleware Services for an ‘‘Exploration Web”

Norm Lamarra
Jet Propulsion Laboratory/Caltech

Pasadena, CA 91 109
Norman.L.amarra@it>l.nasa.gov 818-393-1 561

Abstract-Distributed applications in business,
engineering, and management are evolving rapidly via the
concept of “web services” delivered over the Internet or a
business inmet. A vision is emerging of a fbture
“connected economy”, in which businesses are able to
snaintain and leverage success by responding rapidly to
changes in demand for customer services. Space
applications, however, face a different set of constraints,
some of them much harder to manage. However, we
believe that the concept of shared services is equally
valuable in space, and we believe similar adaptability is
feasible for space applications. The key to this is building
middleware layers on top of standards-based
communication, thus providing adaptability (in the
middleware functionality) without violating
communication standards. The result is that participating
spacecraft can more easily produce or consume diverse
kinds of information and services, such as navigation,
weather, terrain, and remote computational capability. As
more infrastructure services are deployed and more craft
co-operate, the environment becomes progressively richer,
yet participation can be made extremely simple (e.g., for
low-cost “sensor web” micro-units). Our approach
improves the transparency of information, allowing
missions to leverage each others’ resources/capabilities
and hence participate in an evolving “exploration web”
with significantly more capability for efficient, automated,
and even autonomous remote exploration. In such an
“exploration web”, rovers, landers, and orbiters would be
able to collaboratively utilize all assets more effectively
and robustly, potentially providing much greater science
return with lower operations cost and risk. Further in the
future, we envision being able to build or modify
applications robustly “on the fly” when the software
components and data sources may be in different
locations, languages, formats, etc. This extends the
usefidness of space assets by enabling them to benefit
fkom the evolving technology cycle.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. ENABLING TECHNOLOGY 3
3. EXAMPLE APPLICATIONS 3
4. DISCUSSION .. 5
5. REFERENCES .. 6

1. INTRODUCTION
JPL is developing an Interplanetary Network (IPN) in
order to extend the reach and benefit of capabilities that
we have come to use routinely in the terrestrial Internet
[1,2,3]. The vision is grand but clear - spacecraft as
“nodes on the Internet”, web-accessible as distributed
resources, albeit ones with certain differences from those
on Earth or in near space. This paper starts ti-om the
assumption that a) t h i s is a good future goal; and b) many
of the required technologies are already in use today on
the ground. We thus address an approach toward
leveraging those technologies for use in space, namely
space middleware services. In this context, middleware is
viewed as software involved in connecting separate
application pieces (components), but excluding that
involved in the communication connection itself. Indeed,
a primary goal of such middleware is to provide
distributed capability that hides the vagaries of that
communication. The middleware can thus be viewed as
residing between application components (layered
“above”) and communication components (layered
“below”), as shown in Figure 1.

The goal of space middleware is to simplify cooperation
between spacecraft over many missions. It is less obvious
why this would be of benefit for an individual isolated
mission, but it becomes more obvious as more craft are
involved. For example, at this date there are 5 missions
about to launch for Mars over the next few months, and
others are already operating in Mars orbit. Apart from this
kind of opportunity, there are also future plans to fly
cooperative spacecraft, even some in tight formation. It
may thus be a good time to consider the potential benefits
of space middleware in the IPN context.

1

mailto:Norman.L.amarra@it>l.nasa.gov

Assuming there are other spacecraft reachable in the IPN,
space middleware can assist each to extend its own
capability by leveraging the resources of others (e&,
remote storage, computation, or connectivity). Resource
sharing is not a new concept, but has not been well
developed in this context. Middleware-enabled sharing
implies simplified access (e.g., via standard API’s) built
upon persistent capability (services) designed to deal with
fundamental limitations imposed by the constraints of
space operations. Such constraints include: episodic
connectivity; extreme power limitation; low-bandwidth
and long-latency links; need for unattended operation.

A simple example of such a service accessed through a
standard interface is the CCSDS File Delivery Protocol
(CFDP), which enables efficient file transfer over such
space links, and conceptually replaces the standard
Intemet File Transfer Protocol (FTP). Viewed from the
perspective of enabling middleware, CFDP hides the
constraints of the space link by appropriate use of
buffering, accounting, and retransmission, while
guaranteeing complete and ordered delivery of data in file
units (as opposed to frames or a bit stream). More

Application
Services

Middleware
Services

t
Communications

Services

Scrviccs

designed to succeed when standard Intemet protocols are
inadequate because one or more of their design
assumptions (like continuous connectivity) are violated.

Some potential benefits of a robust space-based
middleware approach are:

a) simplified space applications;
b) increased automation;
c) reduced cost;
d) increased reliability and robustness;
e) ability to evolve capability with little or no

modification of the applications.

A major issue is to define what persistent capabilities
would provide most benefit to most space applications at
the lowest cost, and then to develop and deploy them in
the optimal order. Rather than attempting to reach a
broad consensus on this before starting down this path,
our approach is more pragmatic - namely, to quickly
demonstrate some initial simulated capability to otbtain
feedback and perhaps to gain support for extending it
progressively. We have so far addressed two example

c--l I Information Request

I Information supply

Information Analysis

Applications

Where things are;
What is available I

I Appl’n modules;
Remote & Local Processing

Data Management +
Messaging

I Hierarchical storage;
Remote & Local

I

Priority, guarantee,
Blw reserv’n

‘ I Network services Routing, multicast
End-mints

I 1 I I I
Queues Channels;

Buffer mgt

Protocols CCSDS

Figure 1 : Layered View of Space Middleware

generally, it can be viewed as an internet “service” space applications. The first application addresses the

2

common difficulty of intermittent or pass-oriented
communications, i.e., the desire to utilize more connection
paths (even unknown ones) in a seamless way. The
second addresses the fact that sensor bandwidth can
significantly exceed downlink bandwidth. The reader can
judge whether the demonstrated approach achieves the
general benefits desired, particularly in simplifying the
applications. More importantly, it needs to be decided
when the service approach can provide sufficient return
on investment. Some lessons learned ffom the evolution
of the Intemet may be directly relevant:

The Intemet did not evolve primarily by prior
coordinated design but by increasing usage and
incremental (experimental) extension - successes
evolved new standards;
The evolution of today’s wireless web is dealing with
many issues similar to those mentioned above for
space (e.g., disconnectedness caused by mobility,
extreme power limitation as in handheld devices,
etc.);
The hot topic of ‘’web services” promotes a view of
distributed applications that supports the above
middleware approach;
Costs of participation reduce dramatically with
widespread acceptance via standardization.

2. ENABLING TECHNOLOGY
We have looked at two key enabling technologies that
support middleware for space: robust asynchronous
messaging; and a shared object model. We assume that
communications services are available and perhaps
standardized (e.g., CCSDS protocols).

Robust messaging addresses many of the limitations
imposed by the space domain, such as disconnectedness,
long-latency links, etc. Moreover, messagaoriented
middleware (MOM) has a successful history in the
evolution of publishhubscribe internet applications, as
distinct from those built using tightly-coupled remote
invocation. At a high level, this difference can be
compared to that between sending email and having a
phone conversation. The former allows the sender and
receiver each to continue performing work independently
of the (background) email transfer, while the latter
requires both parties to be interacting simultaneously in
real time (with some acknowledgment). The ubiquity and
volume of today’s email traffic attests to its utility as a
productivity aid in the work environment. Moreover, in
the space domain it is often impossible to provide real-
time interactivity . Messaging can also assist automation,
since tasks can be linked to the content of such messages.
As a simple example, action might be triggered only

when the value of a certain field received in a regular
message reaches a certain range.

This leads to discussion of the second enabling
technology: a shared object model can enable such
messages to have significantly more meaning. An object
of a particular type encapsulates specific properties and
coded functions; if an object of this type is created by one
application then an similar object can be created and
manipulated on a remote platform without transferring the
entire object (which may be quite large). Separate
application components (e.g., on different platforms) can
thus interact efficiently because there are standardized
rules for each to deal with the referenced objects. An
example of this in the space domain is that a model of a
sensor can be Created on the ground and can contain
functions like “take current reading” or “set calibration
value”. While the actual sensor may be on a remote
spacecraft, ground software can interact with the local
model of the sensor in exactly the same way as the
spacecraft can, provided the ground and flight software
share the object model. More importantly, these objects
can be coupled by messages containing only the object
reference and the property values, thus providing an
efficient way to structure communications. A more
futuristic example application could embed the object in a
virtual world accessible to ground participants without
requiring a real-time connection. This addresses (and
extends) the notion of interacting with spacecraft as “live”
nodes on the internet, but also shows a way to
si@icantly simplify interactions between spacecraft.

3. EXAMPLE APPLICATIONS
We have explored two prototype applications using these
key technologies to explore the ability of messaging
middleware either to simplify the application or to support
new capability. These prototypes were not chosen to be
currently realistic, but to show some of the potential utility
of the middleware approach in constructing possible
future scenarios with greater capability or flexibility.
With such a controversial approach (space middleware),
an abstract example can appear too general to be useful,
while each specific example may appear not to be
addressing needs relevant to a particular reader. They
should thus be viewed as a way for us to explore potential
benefits and pitfalls of shared space middleware.

The fnst prototype application addresses a simulated
scenario involving communication between a rover and
the ground. Normally, this communication is scheduled
for a single pass per sol, during which telemetry is
downlinked and commands are uplinked. In that case,
only simple point-to-point scheduled communication is
necessary, but conversely this limits the rover to a 1-sol

3

cycle of reporting and plan updates. Our middleware
prototype added consideration of another craft (orbiter) as
an ad-hoc relay, thus allowing a more rapid cycle.
However, in order to investigate the concept of a flexible
relay, we postulated that some adaptivity would be
required of the joint activities of the rover and orbiter.
This adaptivity could take the form of a request by the
rover for relay capability to Earth (fiom any possible
responder), and a negotiation between the responder for
changes to both their plans to accommodate the request.

JPL has had significant experience developing a robust
object-based messaging middleware for military
application. Since many of the constraints of this
application are similar to those described for space, we
attempted to apply this middleware (SharedNet) to
explore the above scenario. We thus created a new
activity type in the (shared) object model and used the
messaging middleware to transfer attributes (such as task
type, start and end time) between existing planner
applications assumed to be running on both rover and
orbiter. The communications model between SharedNet
participants is described by clients publishing messages to
a server and registering subscriptions to particular object
types. In the roverlorbiter example, the orbiter could host
the server, and messages between the rover and orbiter
would be transferred in prioritized order when connection
between them was established (i.e., when the rover and
orbiter plans allowed it). Subsequent plan negotiation
results fiom each planner subscribing to plan objects fiom
the other; these objects contain either plan update requests
or replies. The demonstration showed that the
publishhubscribe messaging middleware was easily
adapted to th is new (planning) application.

At frrst glance, such an approach might appear to be
“overkill” for the type of scenario described, since a
specific relay connection could be built into both rover
and orbiter plans by agreement between the mission
operations teams on the ground. However, the purpose of
this investigate was to explore features that provide a
M e w o r k for much greater potential capability, if the
existence of appropriate middleware is considered. For
example, it indicates that spacecraft communication can
be automated (like cell-phone connectivity) to make better
use of available communication opportunities and
bandwidth. It also indicates how such connections can be
efficiently utilized via a shared object model, and avoids
the creation and implementation of a new application
protocol for each such type of communication. Next, the
use of a publishhubscribe paradigm allows participants to
automatically obtain only the information they wish to
receive when connection occurs, and show that many
different kinds of information transfer can utilize the same

connection (but dif€erent objects). For example, the
messages could contain sensor readings, navigation
information, images, etc., and could be destined for many
kinds of users. Lastly, the subscriber may even be
unknown to the publisher, for example an in-situ sensor
publishes a regular measurement to a server which then
makes them available to interested parties.

Having outlined some of the ways such a messaging
inf?astructure could be used, it can now be inferred that
new capabilities can be conceived and implemented much
more simply. For example, an automated application
(e.g., agent) could collect information fiom a number of
sensors (by subscription, without needing direct contact
with any of them), and then perform a task based on
derived information - e.g., to capture a seismological or
weather event. The relatively simple remote automated
messaging infrastructure thus opens the door to other
event-driven science that might be impossible if round-trip
connections to Earth were needed. From the ground
viewpoint, downlink bandwidth might only be utilized
when particular events are observed by sensors within the
planetary network. ?his is becoming a sketch preview of
the middleware-based “exploration web”.

The second example application looked at the work of
another research team at JPL (OASIS). In that
application, images taken by a camera for navigation
during long traverse are processed onboard to determine
science value against criteria specified by the scientist. If
“sufficiently interesting” results are obtained, then
notification is sent to the ground at the next opportunity,
perhaps resulting in the scientist requesting plan
modification to interrupt the traverse in favor of a closer
inspection of the “found” area of interest. Without such a
“traverse science” application, potentially valuable science
information could be missed, and onboard capability
unwed.

This kind of science application also fits quite easily into
the above-described middleware infrastructure. First, the
acquired images can be “published” to the onboard
message store (thus making them immediately available to
other applications), along with metadata such as
acquisition time, location, etc. (as properties of the image
object). An onboard science processing application can
then “subscribe” to the sensor data, and returns results
either as M e r metadata properties of the original image,
or as a new processed object (e.g., a feature vector that
also contains a reference to the original source object).
The processed vectors can then be ordered by interest
value. The scientist (who provided the feature processing
algorithm) then subscribes to this ordered feature set,
perhaps requesting only those above a certain level.

4

These results will be delivered semi-automatically (via
some path created by the distribution middleware as
connectivity and priority allow). This is quite a different
approach than the current one, and should be considered
only as a stimulant to conceive interesting new
applications that might be feasible if such middleware
were available and reliable.

Figure 2 shows a middleware-enabled environment
providing capability to several example applications via
the same few standardized middleware features (message
transfer, local storage and query, prioritized delivery).
More importantly, evolutions to this capability can easily
be envisioned and simply implemented, perhaps even “on
the fly”. For example, the scientist could request
(subscribe to) the original image for a particular feature

to science events. Finally, if sufficient regional storage
provided (e.g., on an orbiting platform), information of
value to other missions can be made available without
ever making the round trip to Earth. For example, high-
resolution mapping data obtained by an orbiting sensor
could be utilized by a navigation algorithm on a rover.
This is particularly interesting given that 4% of the
mapping data produced by Mars Global Surveyor can be
downlinked to Earth using current links.

4. DISCUSSION
Space-based middleware can help shift focus away from
the details of point-to-point remote communication and
towards a high-level service architecture with increased
capability for automation and cooperation among space
assets. A fmt step is to defme high-level data objects and

t f
SDace Middleware Services

Figure 2: Space Middleware Environment

vector received, or could remotely modify the onboard
processing algorithm to consider other factors, perhaps
including information obtained fiom other sensors which
may not even be on the same spacecraft. Temporary local
storage can be semi-automatically released by deleting
objects using such criteria as time to expire or lowest
relative importance. Many such features can be
implemented with little or no ground communication.
This can preserve downlink bandwidth and increase
quality of science delivered while simultaneously
providing more rapid (perhaps even automated) response

a mechanism to allow efficient exchange between
producers and consumers interested in particular attributes
of such objects. This also helps on-board applications to
be insulated from inessential details (including the
vagaries of the space communication). We believe these
many of these details are best handled once (at the s h e d
service layer), rather than every time (at the individual
application level).

We distinguish the suggested space service architecture
fiom the (required) underlying communication protocols.

5

Of course, such an architecture cannot be deployed in
space without careful attention to its particular constraints
(e.g., intermittent connectivity, limited resources such as
bandwidth, power, etc.). Moreover, reliability and
availability become paramount for services in the space
domain, and need to be addressed much more carefilly
than is typical for internet-based services. For example,
automated transparent service redundancy would be an
important goal.

We also need to define interfaces to appropriate higher-
level peer information services (as in the middle column
of Figure I), and to design these services to be layered
appropriately despite the highly resource-constrained
environment. Our suggested approach is to follow the
incremental development of terrestrial web services,
which are based on encapsulated components
communicating via Internet protocols. As observed with
the terrestrial Internet, functionality and benefits would
increase as more services are deployed and more
resources (spacecrafi) co-operate.

seen as working to assist this work, not to provide an
alternative. It is perceived that the larger problem to be
solved is not technological in nature, but cultural.

This work was performed at the Jet Propulsion Laboratory
of the California Institute of Technology under NASA
support. Original contributions of Anthony Barrett, Thom
McVittie, and Brad Clement are acknowledged.

5. REFERENCES
1. V. Cerf et al., “Delay-Tolerant Network

Architecture”: March 2003:
h~v:/ /www.dhlrg.orgs~c~dra~ irtf dtnrg arch 02.

2. K. Fall, “A Delay-Tolerant Network Architecture for
Challenged Internets”, IRB-TR-03-003, Feb., 2003:
httv://www.dtnra.ord~avers/IRB-TR-O3 -003 .vdf

3. K. Scott, S. Burleigh, “Bundle Protocol
Specification”, Mar 2003,
h~: / /www.dtnr~.orgsvecs /~a~ irtf dtnrg bundle s
pec 00.vdf

odf

There is significant ongoing work in areas such as IPN
architecture, space communication standards, protocol
development, onboard autonomy, distributed science.
This description of space middleware is intended to be

6

